
Optimal Path Planning for Mobile Robots Using
Memory Efficient A*

Iram Noreen

Department of Computer Science
COMSATS Institute of Information

Technology
Lahore, Pakistan

iramnoreen@gmail.com

Amna Khan

Department of Computer Science
COMSATS Institute of Information

Technology
Lahore, Pakistan

amna.cs@gmail.com

Zulfiqar Habib

Department of Computer Science
COMSATS Institute of Information

Technology
Lahore, Pakistan

drzhabib@ciitlahore.edu.pk

Abstract— Optimal path for robot in collision free space is

influenced by a number of factors such as path length, total
number of turns, and execution time. A* is a well-known grid
based path planning approach used for path planning of robots. In
this paper, an efficient variation of A*, named Memory Efficient
A* (MEA*), is proposed to find optimal path between start and
goal point while avoiding obstacles. Performance of proposed
algorithm is compared with popular grid based path planning
approaches. Simulation results have shown that MEA* performs
better with increased computational efficiency. It generates
shorter paths in less time with less memory requirements.
Moreover, proposed approach also outperforms other grid based
planners in narrow passages and complex environments as well.
These advantages of proposed approach make it feasible for
mobile robots having limited memory and energy constraints.

Keywords— mobile robot; path planning; A*; grid based
algorithm; memory efficient; Optimal path

I. INTRODUCTION
Path planning is a discipline that deals with planning

algorithms to generate feasible path for mobile robots in an
obstacle cluttered environment [1]. Its application areas include
but are not limited to surveillance and security,
agriculture, medicine, business industry and trajectory planning
of unmanned aerial vehicle (UAV) [1, 2]. The main purpose of
path planning algorithm is to efficiently navigate robot from an
initial state to a final state by avoiding obstacles in its
surroundings. In the category of stochastic path planners RRT
[3] is most popular, whereas in grid based path planners A* [4]
outperforms than others in most realistic scenarios. These
planners generate geometric piecewise linear path comprising of
straight line segments [1]. Though grid based algorithms like A*
[4], wavefront [5], modified wavefront [6] and HPA* [7] give
optimal solution but due to discretization of the state space their
performance degrades in high dimensions. Consequently,
memory requirements and execution time grows with the
increase of problem complexity. These search algorithms suffer
in real time scenarios of constrained limited memory and CPU
requirements [7]. The need for memory efficient algorithm
becomes evident with robots having limited memory and
processing capability.

In this paper, a global grid based algorithm Memory
Efficient A* (MEA*) for static environment is presented.
Proposed approach aims to improve three main features;

execution time, memory requirements and path length.
Simulation results have shown that MEA* is time and memory
efficient than prominent grid based planners such as wavefront
[5], modified wavefront [6] and HPA* [7]. Moreover, proposed
approach generates shorter path.

Rest of the paper is organized as follows. Related work is
discussed in Section II. Methodology of the proposed approach
is presented in Section III. Section IV describes datasets and
experimentation setup. Simulation results and performance
comparison are presented in Section V. Section VI presents
conclusion and future directions.

II. RELATED WORK
Grid based path planning algorithms are generally suitable

for low dimensional search space. They directly map the
configuration space with the grid points by subdividing the
configuration space into smaller cells. They use discrete
methods to plan the path and the resulting path is a sequence of
cells [5, 8]. Dijkstra [9], Extended Dijkstra [10], wavefront [5],
and A* [4] are most popular grid based approaches. Dijkstra was
first heuristic based approach, however it had poor search
efficiency for high dimensions, hence was not practical for path
planning applications [10]. Extended Dijkstra was able to solve
path navigation problem within a specified time [10]. Wavefront
[5] has also been used for path planning problems. It generates
a cost matrix within grid and then performs backtracking from
source to goal by selecting minimum cost. Thompson et al. [11]
have efficiently used wavefront planner for Slocum glider with
48-hour ocean current predictions. Ansuategui et al. [12] have
presented a trajectory comparison method using wavefront and
other grid based planners. Recently, Tang et al. [6] have
presented a performance comparison of wavefront with
modified wavefront, claiming 19% improvement in results of
modified wavefront than wavefront.

Originated with Dijkstra variations, A* [4] is a best first
search algorithm commonly used in path planning algorithms in
robotics and computer games [13, 14] . Working of A*
algorithm is explained in the Fig. 1. A* search defines a heuristic
cost function f-value as , where is
the length of the path from the current node to the start node and

 is the length of the path from the current node to the goal
node. Its cost function estimates the minimum cost from the
starting node to the goal node. However, A* is highly dependent

2016 International Conference on Frontiers of Information Technology

978-1-5090-5300-1/16 $31.00 © 2016 IEEE

DOI 10.1109/FIT.2016.32

142

2016 International Conference on Frontiers of Information Technology

978-1-5090-5300-1/16 $31.00 © 2016 IEEE

DOI 10.1109/FIT.2016.32

142

2016 International Conference on Frontiers of Information Technology

978-1-5090-5300-1/16 $31.00 © 2016 IEEE

DOI 10.1109/FIT.2016.32

142

upon efficiency of its heuristic cost function and its search space
expands large for high dimensional environment. Moreover, it is
only suitable for static environment [15]. As the solution path
given by A* search algorithm consists of adjacent tiles of the
map therefore, solution path is long and jagged. Different
variations of A* such as Theta* [14] and HPA* [7] address this
issue by using a simplistic approach of global pruning as a post
processing step.

Fig. 1. Algorithm of the A*.

III. METHODOLOGY
This section presents the proposed algorithm MEA*, which

aims to improve time and memory efficiency of A*. Steps of
proposed algorithm are described in Fig. 2. It maintains three
lists, containing the nodes to be explored,
containing already explored nodes, and the
containing parent node of the current node. Environment map
is provided to planner, where free space in environment is
represented by value 0 and is represented by 1, as shown in
Fig. 3. MEA* starts by setting goal position as current node
with the cost value of 2. Then it propagates a wave towards the
source position , by creating cost matrix. For this purpose it
uses minimum Euclidean distance criteria and assigns cost to
neighbor, until source is visited. At each iteration only node
with the minimum f-value is added in the and
remaining neighbors are ignored. Hence, execution time and
memory requirements of the proposed approach are reduced.
Whereas in previous approaches such as A* [4], HPA* [7] and

wavefront [5, 6], all the neighboring vertices are inserted in the
along with their cost, which causes large memory

requirements with the increase of problem complexity.

Fig. 2. Algorithm of the proposed MEA*.

Fig. 3. Cost matrix of MEA* algorithm.

Once source is visited, a piecewise linear path is generated
by backtracking the grid cells from source to target position.
This backtracking also requires traversing and processing less
number of grid cells as compared to previous approaches. The
proposed algorithm is not only efficient in finding a path as
compared to previous grid based approaches [5, 6] but also
eliminates the chances of multiple paths (see Fig. 3). However,
the generated path may comprise of unnecessary waypoints.
Therefore global path pruning [16] is performed to shorten the
path. Pruning process is applied to the solution path. Pruning
selects only ideal points, which are directly connectable using
collision free straight lines as illustrated in Fig. 4. Moreover, a
safe boundary distance according to robot size is also maintained
during pruning.

Algorithm 1: A*(start, goal)

1 closeList :=
2 openList :=
3 parentList :=
4 openList := start // Initialize openList with the start.
5 g_cost [start] = 0
6 f_cost [start] = g_cost[start] + heuristic_cost(start, goal)
7 while openList
8 current := node in the openList with the minimum f_cost.
9 if current = goal
10 return pathFound
11 openList.remove(current)
12 closeList.add(current)
13 for each neighbor of current
14 if neighbor in closedList
15 continue// Ignore the neighbor which is already evaluated.
16 temp_cost := g_cost[current] + heuristic_cost (current,
 neighbor)
17 if neighbor not in openList// Discover a new node
18 openList.add(neighbor)
19 else if temp_cost >= g_cost[neighbor]
20 continue; // This is not a better path.
21 parentList[neighbor] := current // best path until now.
22 g_cost[neighbor] := temp_cost
23 f_cost[neighbor] := g_cost[neighbor] +

 heuristic_cost(neighbor, goal)
24 end
25 end while

Algorithm 2: MEA*(start, goal)

1 closeList :=
2 openList :=
3 parentList :=
4 openList := start // Initialize openList with the start.
5 g_cost := map // Initialized with default value of infinity.
6 g_cost [start] = 0
7 f_cost := map // Initialized with default values of infinity.
8 f_cost [start] = g_cost[start] + heuristic_cost(start, goal)

9 while openList
10 current := node in the openList with the minimum f_cost.
11 if current == goal
12 return pathFound
13 openList.remove(current)
14 closeList.add(current)
15 for each neighbor of current
16 calculate fcost for each neighbor
17 minNeighbor := min_fcost(neighbour)
18 openList.add(minNeighbor)
19 closeList.add(allneighbors except minNeighbor)
20 parentList.add(current) // for constructing path
 when goal reached
21 end
22 end while

(a) Initial Configuration. (b) Final Configuration.

143143143

The waypoints representing the final path obtained after
pruning are much less than the original generated path as
illustrated in Fig. 5. In modified wavefront and A*, every point
on the path is saved as a waypoint, see Fig. 5 (a), whereas in
proposed approach only pruned points are selected as final
waypoints, see Fig. 5 (b). Hence final trajectory comprising of
pruned points is more efficient with respect to storage and
execution. The execution time efficiency is evident from
simulation results in Section IV.

Fig. 4. Path pruning.

Fig. 5: Comparison of waypoints in path generated by the A* and MEA*.

A. Complexity Analysis
If represents the size of the input, then complexity analysis

of the proposed algorithm can be summarized with a few steps.
During every iteration, the neighborhood with the minimum
Euclidean distance is selected for expansion of the wave. Cost
matrix expansion is dependent upon the heuristic function based
on selective Euclidean, therefore it has complexity equal to

. The resulting linear path is then pruned by first
identifying the critical points and then selecting critical points
directly connecting using line-of-sight principle. This yields our
second heuristic function. The complexity of this procedure
directly dependents on the size of the linear path that is further
dependent on start position , goal position and selective
Euclidean heuristic function. As a result, the complexity of the
proposed algorithm could be expressed as .

IV. DATA SETS AND EXPERIMENTATION SETUP
We have considered different environment map cases M1,

M2, M3, M4 and M5. Environment map M1 represents a simple
environment with a single obstacle. M2 is a dense environment
case, M3 signifies highly dense environment. M1, M2 and M3
are adopted from datasets of previous approaches [6, 7].
However to test the robustness of proposed approach in
exceptional cases two other scenarios of narrow passage and
complex concave environment are also considered represented
by maps M4 and M5 respectively. A simulation environment is
developed using 64-bit version of MATLAB 15 to evaluate the
proposed method for graphical and numerical comparative
analysis with previous approaches. The proposed algorithm
MEA*, modified wavefront [6] and another recent variation of
A* algorithm i.e., HPA* [7] are implemented and tested in
MATLAB. The operating system used for experimentation is
64-bit Windows 8.1 Pro on PC with an Intel i3-4010U@1.70
GHz CPU and 4GB internal RAM.

V. SIMULATION RESULTS
In this section, simulation results for proposed algorithm are

presented. Visual comparison of MEA* algorithm with previous
approaches, i.e., modified wavefront [6] and HPA* [7] is shown
in Fig. 6 (a) - (c). It is evident from Fig. 6 that proposed approach
has generated shorter paths than both previous approaches. Main
reason of getting shorter path is that proposed approach inserts
neighbor with minimum Euclidean cost in , whereas
previous approaches inserts all neighbors in . A short

 comprising of only valuable neighbors thus, reducing
execution time and total number of cells to be processed.
Secondly, proposed approach further shortens the path using
pruning technique. Proposed approach is flexible enough to
generate safe and shorter path in much less time with less
number of turns for narrow passages case M4 and for complex
concave shape case M5, as shown in Fig. 6. This is quite possible
because proposed approach has to traverse and process less
number of grid cells to backtrack the path as explained in Section
III. Further pruning process also eliminates extra waypoints in
the path, which reduces the path length.

Fig. 7 (a) and Fig. 7 (b) presents execution time plot and path
length plot respectively. Fig. 7 (c) shows total number of grid
cells processed and Fig. 7 (d) shows total number of turns in final
path for all three approaches. It is evident from plots in Fig. 7
that MEA* outperforms other approaches because of its short

 and pruning criteria. Summary presented in Table I
concludes that execution time, number of turns, path length and
number of processed cells in proposed approach are less than
previous approaches with remarkable percentage difference.

Proposed algorithm generates piecewise linear path like
other grid based planners. Such a path is not feasible with
dynamic and kinematic constraints of mobile robots. Such a path
makes robot to make complicated motions to follow sharp turns
resulting in high energy consumption, controller exertion and
premature aging of robotic parts. Use of tangent continuous
curves [17] for slow moving mobile robots and curvature
continuous spiral transitions [18, 19] for high speed objects like
auto-drive cars and aerial vehicles would be of great interest.

(a) Waypoints in Modified wavefront. (b) Waypoints in MEA*.

144144144

Fig. 6. Comparison of paths in different environments of proposed approach
with popular grid based approaches.

TABLE I. SUMMARY OF COMPARATIVE ANALYSIS.
Algorithms Execution

time

Total
number of

turns

Path
length

Processed
grid cells

MEA* vs.
Modified

Wavefront [6]
97.45 %

less
63.33 %

less
5.89 %

less
98.35 %

less

MEA* vs. HPA*
[7]

96.81 %
less

54.16 %
less

4.30 %
less

97.84 %
less

VI. CONCLUSION

 In this paper, a grid based algorithm MEA* is presented to
find collision free and optimal in cluttered environment.
Performance of MEA* is compared with prominent grid based
algorithms for static environment. MEA* is proved to generate
shorter path, and effective for narrow passages as well. Further,
computational efficiency and less memory requirements make
it suitable to program for small robots with constraints of
limited energy and memory. Desired future directions are
experiments in high dimensions and to smooth sharp turns by
replacing straight lines with smooth curves to improve the path
feasibility for car-like robots.

(a) Execution time comparison.

 (b) Comparison for path length.

(a) Modified wavefront
[6] (b) HPA* [7]. (c) MEA*.

M2

M3

M4

M5

M1

145145145

(c) Comparison for total number of processed cells.

(d) Comparison for total number of turns in path.

Fig. 7: Comparison of proposed approach MEA* with modified wave front [6]
and HPA* [7] .

REFERENCES

[1] S. M. Lavalle, Planning Algorithms: Cambridge
University Press, 2006.

[2] M. Yao, and M. Zhaoa, "Unmanned aerial vehicle
dynamic path planning in an uncertain environment",
Robotica, vol. 33 pp. 611-621, 2015.

[3] S. M. Lavalle, "Rapidly-Exploring Random Trees: A
New Tool for Path Planning", 1998.

[4] P. E. Hart, N. J. Nilsson, and B. Raphael, "A Formal
Basis for the Heuristic Determination of Minimum
Cost Paths", IEEE TRANSACTIONS OF SYSTEMS
SCIENCE AND CYBERNETICS, vol. 4, pp. 100-107,
1968.

[5] A. Zelinsky, R. A. Jarvis, J. C. Byrne, and S. Yuta,
"Planning Paths of Complete Coverage of an
Unstructured Environment by a Mobile Robot", in

Proceedings of International Conference on Advanced
Robotics, 1993.

[6] S. H. Tang, C. F. Yeong, and E. L. M. Su,
"Comparison between Normal Waveform and
Modified Wavefront Path Planning Algorithm for
Mobile Robot", Applied Mechanics and Materials,
vol. 607, pp. 778-781, 2014.

[7] A. Botea, M. Muller, and J. Schaeffer, "Near Optimal
Hierarchical Path-Finding", Journal of Game
Development, vol. 1, pp. 1-30, 2004.

[8] C. Goerzen, Z. Kong, and B. Mettler, "A Survey of
Motion Planning Algorithms from the Perspective of
Autonomous UAV Guidance", Journal of Intelligent
and Robotic Systems, vol. 57, pp. 65-100, 2009.

[9] E. W. Dijkstra, "A Note on Two Problems in
Connexion with Graphs", NUMERISCHE
MATHEMATIK, vol. 1, pp. 269-271, 1959.

[10] M. Noto, K. Univ., Yokohama., and H. Sato, "A
Method for the Shortest Path Search by Extended
Dijkstra Algorithm", presented at the IEEE
International Conference on Systems, Man, and
Cybernetics Nashville, TN, 2000.

[11] D. R. Thompson et al., "Spatiotemporal path planning
in strong, dynamic, uncertain currents", presented at
the International Conference on Robotics and
Automation Anchorage Convention District, Alaska,
USA, 2010.

[12] A. Ansuategui et al., "Robot trajectories comparison:
a statistical approach", The Scientific World Journal,
vol. 2014, pp. 1-13, 2014.

[13] X. Cui, and H. Shi, "A*-based Pathfinding in Modern
Computer Games", International Journal of Computer
Science and Network Security, vol. 11, pp. 125-130,
2011.

[14] K. Daniel, A. Nash, and S. Koenig, "Theta Any-Angle
Path Planning on Grids", Journal of Artificial
Intelligence Research vol. 39, pp. 533-579, 2010.

[15] S. Koenig, M. Likhachev, and D. Furcy, "Lifelong
Planning A*", Artificial Intelligence vol. 155, pp. 93-
146s, 2004.

[16] K. Yang, "Anytime Synchronized-Biased-Greedy
Rapidly-exploring Random Tree Path Planning in
Two Dimensional Complex Environments",
International Journal of Control, Automation and
Systems, vol. 9, pp. 750-758, 2011.

[17] Z. Habib, M. Sarfraz, and M. Sakai, "Rational cubic
spline interpolation with shape control", Computers &
Graphics, vol. 29, pp. 594-605, 2005.

[18] Sarpono, Z. Habib, and M. Sakai, "Fair cubic
transition between two circles with one circle inside or
tangent to the other", Numerical Algorithms, vol. 51,
pp. 461-476, 2009.

[19] Z. Habib, and M. Sakai, "Admissible regions for
rational cubic spirals matching G2 Hermite data",
Computer Aided Design, vol. 42, pp. 1117-1124, 2010.

146146146

