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Abstract— Optimal path for robot in collision free space is 

influenced by a number of factors such as path length, total 
number of turns, and execution time. A* is a well-known grid 
based path planning approach used for path planning of robots. In 
this paper, an efficient variation of A*, named Memory Efficient 
A* (MEA*), is proposed to find optimal path between start and 
goal point while avoiding obstacles. Performance of proposed 
algorithm is compared with popular grid based path planning 
approaches. Simulation results have shown that MEA* performs 
better with increased computational efficiency. It generates 
shorter paths in less time with less memory requirements. 
Moreover, proposed approach also outperforms other grid based 
planners in narrow passages and complex environments as well. 
These advantages of proposed approach make it feasible for 
mobile robots having limited memory and energy constraints. 

Keywords— mobile robot; path planning; A*; grid based 
algorithm; memory efficient; Optimal path 

I.  INTRODUCTION  
Path planning is a discipline that deals with planning 

algorithms to generate feasible path for mobile robots in an 
obstacle cluttered environment [1]. Its application areas include 
but are not limited to surveillance and security, 
agriculture, medicine, business industry and trajectory planning 
of unmanned aerial vehicle (UAV) [1, 2]. The main purpose of 
path planning algorithm is to efficiently navigate robot from an 
initial state to a final state by avoiding obstacles in its 
surroundings. In the category of stochastic path planners RRT 
[3] is most popular, whereas in grid based path planners A* [4]  
outperforms than others in most realistic scenarios. These 
planners generate geometric piecewise linear path comprising of 
straight line segments [1]. Though grid based algorithms like A* 
[4], wavefront [5], modified wavefront [6] and HPA* [7] give 
optimal solution but due to discretization of the state space their 
performance degrades in high dimensions. Consequently, 
memory requirements and execution time grows with the 
increase of problem complexity. These  search algorithms suffer 
in real time scenarios of constrained limited memory and CPU 
requirements [7]. The need for memory efficient algorithm 
becomes evident with robots having limited memory and 
processing capability. 

In this paper, a global grid based algorithm Memory 
Efficient A* (MEA*) for static environment is presented. 
Proposed approach aims to improve three main features; 

execution time, memory requirements and path length.  
Simulation results have shown that MEA* is time and memory 
efficient than prominent grid based planners such as wavefront 
[5], modified wavefront [6] and HPA* [7]. Moreover, proposed 
approach generates shorter path.   

Rest of the paper is organized as follows. Related work is 
discussed in Section II. Methodology of the proposed approach 
is presented in Section III. Section IV describes datasets and 
experimentation setup. Simulation results and performance 
comparison are presented in Section V. Section VI presents 
conclusion and future directions. 

II. RELATED WORK 
Grid based path planning algorithms are generally suitable 

for low dimensional search space.  They directly map the 
configuration space with the grid points by subdividing the 
configuration space into smaller cells. They use discrete 
methods to plan the path and the resulting path is a sequence of 
cells [5, 8]. Dijkstra [9], Extended Dijkstra [10], wavefront [5], 
and A* [4] are most popular grid based approaches. Dijkstra was 
first heuristic based approach, however it had poor search 
efficiency for high dimensions, hence was not practical for path 
planning applications [10]. Extended Dijkstra was able to solve 
path navigation problem within a specified time [10]. Wavefront 
[5] has also been used for path planning problems. It generates 
a cost matrix within grid and then performs backtracking from 
source to goal by selecting minimum cost. Thompson et al. [11] 
have efficiently used wavefront planner for Slocum glider with 
48-hour ocean current predictions. Ansuategui et al. [12] have 
presented a trajectory comparison method using wavefront and 
other grid based planners. Recently, Tang et al. [6] have 
presented a performance comparison of wavefront with 
modified wavefront, claiming 19% improvement in results of 
modified wavefront than wavefront.  

Originated with Dijkstra variations, A* [4] is a best first 
search algorithm commonly used in path planning algorithms in 
robotics and computer games [13, 14] . Working of A* 
algorithm is explained in the Fig. 1. A* search defines a heuristic 
cost function f-value as , where  is 
the length of the path from the current node to the start node and 

 is the length of the path from the current node to the goal 
node. Its cost function estimates the minimum cost from the 
starting node to the goal node. However, A* is highly dependent 
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upon efficiency of its heuristic cost function and its search space 
expands large for high dimensional environment. Moreover, it is 
only suitable for static environment [15]. As the solution path 
given by A* search algorithm consists of adjacent tiles of the 
map therefore, solution path is long and jagged. Different 
variations of A* such as Theta* [14] and HPA* [7] address this 
issue by using a simplistic approach of global pruning as a post 
processing step.  

 
Fig. 1. Algorithm of the A*. 

III. METHODOLOGY 
This section presents the proposed algorithm MEA*, which 

aims to improve time and memory efficiency of A*. Steps of 
proposed algorithm are described in Fig. 2. It maintains three 
lists,  containing the nodes to be explored,  
containing already explored nodes, and the  
containing parent node of the current node. Environment map  
is provided to planner, where free space  in environment is 
represented by value 0 and  is represented by 1, as shown in 
Fig. 3. MEA* starts by setting goal position  as current node 
with the cost value of 2. Then it propagates a wave towards the 
source position , by creating cost matrix. For this purpose it 
uses minimum Euclidean distance criteria and assigns cost to 
neighbor, until source  is visited.  At each iteration only node 
with the minimum f-value is added in the and 
remaining neighbors are ignored.  Hence, execution time and 
memory requirements of the proposed approach are reduced. 
Whereas in previous approaches such as A* [4], HPA* [7] and 

wavefront [5, 6], all the neighboring vertices are inserted in the 
along with their cost, which causes large memory 

requirements with the increase of problem complexity.  

 
Fig. 2. Algorithm of the proposed MEA*. 

 
Fig. 3. Cost matrix of MEA* algorithm. 

Once source is visited, a piecewise linear path is generated 
by backtracking the grid cells from source to target position. 
This backtracking also requires traversing and processing less 
number of grid cells as compared to previous approaches. The 
proposed algorithm is not only efficient in finding a path as 
compared to previous grid based approaches [5, 6] but also 
eliminates the chances of multiple paths (see Fig. 3). However, 
the generated path may comprise of unnecessary waypoints. 
Therefore global path pruning [16] is performed to shorten the 
path. Pruning process is applied to the solution path. Pruning 
selects only ideal points, which are directly connectable using 
collision free straight lines as illustrated in Fig. 4. Moreover, a 
safe boundary distance according to robot size is also maintained 
during pruning. 

Algorithm 1:  A*(start, goal) 
 
 
1  closeList  :=  
2  openList   :=  
3  parentList   :=  
4  openList := start // Initialize openList with the start. 
5  g_cost [start] = 0 
6  f_cost [start] = g_cost[start] + heuristic_cost( start, goal) 
7  while openList   
8  current := node in the openList with the minimum f_cost. 
9  if current = goal 
10      return pathFound 
11 openList.remove(current) 
12 closeList.add(current) 
13 for each neighbor of current 
14 if neighbor in closedList 
15    continue// Ignore the neighbor which is already evaluated.                 
16     temp_cost := g_cost[current] + heuristic_cost (current,  
         neighbor) 
17     if neighbor not in openList// Discover a new node                    
18             openList.add(neighbor) 
19     else if temp_cost >= g_cost[neighbor] 
20            continue; // This is not a better path. 
21            parentList[neighbor] := current // best path until now.  
22            g_cost[neighbor] := temp_cost 
23            f_cost[neighbor] := g_cost[neighbor] +     

                                            heuristic_cost(neighbor, goal) 
24 end  
25 end while 
 
 

Algorithm 2:   MEA*(start, goal) 
 
1  closeList  :=  
2  openList   :=  
3  parentList :=  
4  openList := start // Initialize openList with the start. 
5  g_cost := map // Initialized with default value of infinity. 
6  g_cost [start] = 0 
7  f_cost := map // Initialized with default values of infinity. 
8  f_cost [start] = g_cost[start] + heuristic_cost( start, goal) 
 
9  while openList   
10 current := node in the openList with the minimum f_cost. 
11 if current == goal 
12           return pathFound 
13 openList.remove(current) 
14 closeList.add(current) 
15 for each neighbor of current 
16           calculate fcost for each neighbor 
17           minNeighbor := min_fcost(neighbour)                 
18            openList.add( minNeighbor) 
19            closeList.add( allneighbors except minNeighbor) 
20            parentList.add( current) // for constructing path     
                when goal reached 
21 end  
22 end while 
 
 

(a) Initial Configuration. (b) Final Configuration. 
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The waypoints representing the final path obtained after 
pruning are much less than the original generated path as 
illustrated in Fig. 5. In modified wavefront and A*, every point 
on the path is saved as a waypoint, see Fig. 5 (a), whereas in 
proposed approach only pruned points are selected as final 
waypoints, see Fig. 5 (b). Hence final trajectory comprising of 
pruned points is more efficient with respect to storage and 
execution. The execution time efficiency is evident from 
simulation results in Section IV. 

 
Fig. 4. Path pruning.  

 

 

Fig. 5: Comparison of waypoints in path generated by the A* and MEA*. 

A. Complexity Analysis 
If  represents the size of the input, then complexity analysis 

of the proposed algorithm can be summarized with a few steps. 
During every iteration, the neighborhood with the minimum 
Euclidean distance is selected for expansion of the wave. Cost 
matrix expansion is dependent upon the heuristic function based 
on selective Euclidean, therefore it has complexity equal to 

. The resulting linear path is then pruned by first 
identifying the critical points and then selecting critical points 
directly connecting using line-of-sight principle. This yields our 
second heuristic function. The complexity of this procedure 
directly dependents on the size of the linear path that is further 
dependent on start position , goal position  and selective 
Euclidean heuristic function. As a result, the complexity of the 
proposed algorithm could be expressed as . 

IV. DATA SETS AND EXPERIMENTATION SETUP 
We have considered different environment map cases M1, 

M2, M3, M4 and M5. Environment map M1 represents a simple 
environment with a single obstacle. M2 is a dense environment 
case, M3 signifies highly dense environment. M1, M2 and M3 
are adopted from datasets of previous approaches [6, 7]. 
However to test the robustness of proposed approach in 
exceptional cases two other scenarios of narrow passage and 
complex concave environment are also considered represented 
by maps M4 and M5 respectively. A simulation environment is 
developed using 64-bit version of MATLAB 15 to evaluate the 
proposed method for graphical and numerical comparative 
analysis with previous approaches. The proposed algorithm 
MEA*, modified wavefront [6] and another recent variation of 
A* algorithm i.e., HPA* [7] are implemented and tested in 
MATLAB. The operating system used for experimentation is 
64-bit Windows 8.1 Pro on PC with an Intel i3-4010U@1.70 
GHz CPU and 4GB internal RAM. 

V. SIMULATION RESULTS 
In this section, simulation results for proposed algorithm are 

presented. Visual comparison of MEA* algorithm with previous 
approaches, i.e., modified wavefront [6] and HPA* [7] is shown 
in Fig. 6 (a) - (c). It is evident from Fig. 6 that proposed approach 
has generated shorter paths than both previous approaches. Main 
reason of getting shorter path is that proposed approach inserts 
neighbor with minimum Euclidean cost in , whereas 
previous approaches inserts all neighbors in . A short 

 comprising of only valuable neighbors thus, reducing 
execution time and total number of cells to be processed. 
Secondly, proposed approach further shortens the path using 
pruning technique. Proposed approach is flexible enough to 
generate safe and shorter path in much less time with less 
number of turns for narrow passages case M4 and for complex 
concave shape case M5, as shown in Fig. 6. This is quite possible 
because proposed approach has to traverse and process less 
number of grid cells to backtrack the path as explained in Section 
III. Further pruning process also eliminates extra waypoints in 
the path, which reduces the path length.  

Fig. 7 (a) and Fig. 7 (b) presents execution time plot and path 
length plot respectively. Fig. 7 (c) shows total number of grid 
cells processed and Fig. 7 (d) shows total number of turns in final 
path for all three approaches. It is evident from plots in Fig. 7 
that MEA* outperforms other approaches because of its short 

 and pruning criteria. Summary presented in Table I 
concludes that execution time, number of turns, path length and 
number of processed cells in proposed approach are less than 
previous approaches with remarkable percentage difference. 

Proposed algorithm generates piecewise linear path like 
other grid based planners. Such a path is not feasible with 
dynamic and kinematic constraints of mobile robots. Such a path 
makes robot to make complicated motions to follow sharp turns 
resulting in high energy consumption, controller exertion and 
premature aging of robotic parts. Use of tangent continuous 
curves [17] for slow moving mobile robots and curvature 
continuous spiral transitions [18, 19] for high speed objects like 
auto-drive cars and aerial vehicles would be of great interest. 

(a) Waypoints in Modified wavefront. (b) Waypoints in MEA*.
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Fig. 6. Comparison of paths in different environments of proposed approach 
with popular grid based approaches. 

 

TABLE I.  SUMMARY OF COMPARATIVE ANALYSIS. 
Algorithms Execution 

time 

Total 
number of 

turns 

Path 
length 

Processed 
grid cells 

MEA* vs. 
Modified 

Wavefront [6] 
97.45 % 

less 
63.33 % 

less 
5.89 % 

less 
98.35 % 

less 

MEA* vs. HPA* 
[7] 

96.81 % 
less 

54.16 % 
less 

4.30 % 
less 

97.84 % 
less 

 

VI. CONCLUSION 

 In this paper, a grid based algorithm MEA* is presented to 
find collision free and optimal in cluttered environment. 
Performance of MEA* is compared with prominent grid based 
algorithms for static environment. MEA* is proved to generate 
shorter path, and effective for narrow passages as well. Further, 
computational efficiency and less memory requirements make 
it suitable to program for small robots with constraints of 
limited energy and memory. Desired future directions are 
experiments in high dimensions and to smooth sharp turns by 
replacing straight lines with smooth curves to improve the path 
feasibility for car-like robots. 

 
(a) Execution time comparison.  

   
 (b) Comparison for path length. 

   

   

 
 

  
 

   

 

 

 
 
 

(a) Modified wavefront 
[6] (b)  HPA* [7]. (c)  MEA*. 

M2 

M3 

M4 

M5 

M1 
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(c) Comparison for total number of processed cells. 

 
(d) Comparison for total number of turns in path.   

Fig. 7: Comparison of proposed approach MEA* with modified wave front [6] 
and HPA* [7] . 
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