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Abstract—Optimal path planning refers to find the collision 

free, shortest, and smooth route between start and goal positions. 

This task is essential in many robotic applications such as 

autonomous car, surveillance operations, agricultural robots, 

planetary and space exploration missions. Rapidly-exploring 

Random Tree Star (RRT*) is a renowned sampling based 

planning approach. It has gained immense popularity due to its 

support for high dimensional complex problems. A significant 

body of research has addressed the problem of optimal path 

planning for mobile robots using RRT* based approaches. 

However, no updated survey on RRT* based approaches is 

available. Considering the rapid pace of development in this 

field, this paper presents a comprehensive review of RRT* based 

path planning approaches. Current issues relevant to noticeable 

advancements in the field are investigated and whole discussion 

is concluded with challenges and future research directions. 
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I. INTRODUCTION 

The term path planning refers to collision free path 
generation from an initial state to a specified goal state with 
optimal or near optimal cost. Considering different 
applications and constraints of robots, optimal criteria could 
be based on one or more conditions such as shortest physical 
distance, smoothness, low risk, less fuel requirements, 
maximum area coverage, and low energy consumption. 
Hence, in perspective of path planning for mobile robots 
optimal path refers to find a feasible plan with optimized 
performance according to application specified criterion [1]. 
Optimal path planning is also influenced by the holonomic 
and non-holonomic constraints. According to LaValle, the 
term non-holonomic refers to the differential constraints 
(restrictions on permissible velocities) that are not completely 
integrable, such as car-like robots and the others are 
holonomic constraints such as robotic arm [1]. 

Path planning algorithms are of vital importance for 
motion planning of mobile robots due to their numerous 
applications in autonomous cars [2], Unmanned Aerial 
Vehicles (UAVs) [3], forklifts [4], surveillance operations [5], 
medical [6], planetary and space missions [1, 7]. Initial 
complete practical planners such as Road Map (RM), Potential 
Fields, and Cell Decomposition (CD) techniques are unable to 
deal with dynamic and complex high dimension problems [1, 

7-10]. Computational complexity of complete planners limits 
their applications to low dimensional problems [11]. 

Grid based algorithms such as Dijkstra [12], wavefront 
[13] , A* [14], D* [15], and Phi* [16] are resolution-complete 
and are computationally expensive for high dimensional 
complex problems. Evolutionary algorithms such as Particle 
Swarm Optimization (PSO) [17-19], Ant Colony Optimization 
(ACO) [20] and Genetic Algorithm (GA) [21] are suitable for 
multi-objective problems. Many other evolutionary algorithms 
such as Artificial Bee Colony (ABC) [22], Bacterial Foraging 
Optimization (BFO) [23], Bio Inspired Neural Networks [24, 
25], and Fire Fly algorithm [26] are often trapped in local 
optimum, and bear high computational cost. Moreover, they 
are highly sensitive to search space size and data 
representation scheme of problem [27, 28]. 

Sampling Based Planning (SBP) approaches are the most 
influential advancement in path planning [7, 8]. Major 
advantages of Sampling Based Planning (SBP) are low 
computational cost, applicability to high dimensional 
problems and better success rate for complex problems [8, 
29]. SBPs are probabilistic complete, i.e., it finds a solution, if 
one exists, provided with infinite run time [4, 8].  Most 
popular SBP algorithms are Probabilistic Roadmap (PRM) [7, 
8, 30], Rapidly-exploring Random Tree (RRT) [11, 31] and 
Rapidly-exploring Random Tree Star (RRT*) [7]. PRM based 
methods [7, 32] are mostly used in highly structured static 
environment such as factory floors [11, 29, 33]. They are well 
suited for holonomic robots but could be extended for non-
holonomic as well [31]. On the other hand RRT and RRT* 
based approaches [7] naturally extend non-holonomic 
constraints [11] and support dynamic environment as well. 

Introduced by Karaman and Frazzoli [7], RRT* was a 
major breakthrough in optimal path planning for high 
dimensional problems. RRT* has proven asymptotically 
optimal property, i.e., RRT* always converges to an optimal 
solution, if adequate run time is provided. RRT* has gained 
tremendous success in solving high dimensional complex 
problems with numerous successful applications. A survey on 
Sampling Based Planning (SBP) approaches for mobile robots 
was presented in [8]. However, considerable body of research 
has specifically addressed the problem of optimal path 
planning focusing RRT* in recent years as compared to other 
SBP approaches. Rapid pace of development in optimal path 
planning using RRT* based approaches has grown it into a 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 7, No. 11, 2016 

98 | P a g e  

www.ijacsa.thesai.org 

family of algorithms [2, 3, 28, 33-50]. To the best of our 
knowledge, no updated survey exists on RRT* based 
approaches. This paper is an effort to review the major 
breakthroughs in RRT* based approaches providing link to the 
most successful works in the field. Moreover, current state of 
the art is surveyed to explore recent contributions and future 
directions in optimal path planning. 

This paper has been organized in such a way that a 
discussion on RRT* methodology is presented in next section. 
Section III categorizes RRT* based path planning approaches 
in recent years. State of the art techniques are summarized in 
Section IV. Section V presents challenges followed by 
conclusion along with future recommendations in Section VI. 

II. RRT* METHODOLOGY 

This section introduces important path planning concepts 
related to RRT* in order to provide a better understanding of 
this study. It is essential to introduce the basic operations of 
RRT* prior to describe its variant approaches. These 
procedures are found in all RRT* variants, but their 
implementation may differ in different planners and 
applications. 

A. Problem Formulation 

RRT* based approaches operate in the configuration 
space. This configuration space is a set of all possible 
transformations which are applicable to the robot. [1, 51]. Let 
the given configuration space be denoted by a set 

NR  nnZ ,  where n  represents the dimension of the 

given space and N  is a set of positive integers. Configuration 

space occupied by obstacles is denoted by ZZobs   and 

obstacle-free region is denoted by obsZZZ
free

/ . 

freegoal Zz   is the goal and freeinit Zz   is the starting point.

initz  and goalz are provided to planner as input. The problem 

is to find an optimal collision free path between initial initz  

and goal goalz  states in freeZ , with minimum path cost in the 

least possible time Rt , where R is the set of real numbers. 

B. Tree Expansion in RRT* 

RRT* constructs multiple short paths randomly organized 
as tree instead of one long path. It originates tree from initial 

state initz  to find a path towards goal state goalz . The tree 

gradually improves with iterations. In each iteration, a 
sampling process selects a random state say randz  from 

configuration space Z . The random sample randz  is rejected 

if it lies in obsZ . However, if it lies in freeZ  then a nearest 

node say nearestz  is searched in tree T according to a defined 

metric  . If randz  lies in freeZ  and is also accessible to 

nearestz  according to predefined step size, then a local planner 

inserts it in tree by connecting randz  and nearestz . Otherwise, 

planner returns a new node newz  by using a steering function 

and adds it in tree by connecting it with nearestz . This property 

of RRT*, to explore region in freeZ  is called Voronoi bias. A 

collision checking process is performed to ensure collision 
free connection between newz  and nearestz .The Node 

expansion process is illustrated in Fig. 1. 

 

Fig. 1. RRT* Tree expansion process [52] 

If newz  is found collision free then near neighbors of newz  

are searched within the area of a ball of radius defined by 

  d
nnk

/1
/)log(γ [7] ,                         (1) 

where d is the configuration space dimension and γ  is the 

planning constant based on environment. Within the area 
defined by (1), neighbor minz  with least cost is selected to be 

parent of newz . Procedure of near neighbor search is similar to 

k-near neighbor problem to find out the best parent node minz  

of new node newz before its insertion in tree.  New node newz  

is inserted as child of minz  in tree. Further, the cost of near 

neighbor’s parent node is also compared with the cost of newz

. If newz  gives less cost as parent, then rewiring process 

rebuilds the tree for minimum parent cost within the area 
identified by (1) [53]. This process is shown in Fig. 2. 

The process of selecting least cost parent and rewiring tree 
are two most promising features of RRT* and contribute to 
asymptotic optimal property of RRT* [7]. Though best parent 
selection and rewiring of tree improve the path quality. 
However, these features have an efficiency trade-off with path 
quality and make convergence slow as number of nodes in the 

tree increase. When goalz  is found, a path connecting initz  

and  goalz  is established. This path is improved as planner 

continues until a predefined number of iterations are executed 
or given time expires. The RRT* Algorithm is described as 
Algorithm 1. 

  

                (a) Find near neighbors                              (b) Select best parent 
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                (c) Check cost for rewiring                 (d) Rewired tree 

Fig. 2. Near neighbor search and rewiring operations in RRT* [52] 

Algorithm 1.  Ƭ = (V, E) ← RRT*( zinit) 

1 Ƭ ← InitializeTree(); 

2 Ƭ ← InsertNode(Ø, zinit, Ƭ); 

3 for i=0 to i=N do 
4        zrand ← Sample(i); 

5        znearest ← Nearest(Ƭ, zrand); 

6        (znew, Unew) ← Steer (znearest, zrand); 
7        if Obstaclefree(znew) then 

8             znear ← Near(Ƭ, znew, |V|); 

9             zmin ← Chooseparent (znear, znearest, znew); 
10           Ƭ ← InsertNode(zmin, znew, Ƭ); 

11           Ƭ ← Rewire (Ƭ, znear, zmin, znew); 

12 return Ƭ 

 

III. METHODOLOGIES BASED ON RRT* ALGORITHM 

This section provides review of optimal path planning 
using RRT* in recent six years with major breakthroughs in 
the field. To provide a better understanding of research body, 
we have classified these approaches based on the similar 
concepts such as type of environment information available, 
the structure of the tree and the constraints managed by 
approach.  RRT* have been used in online mode or offline 
mode depending upon availability of environment 
information. If environment parameters are unknown or highly 
uncertain then local planning is performed, also called online 
(sensor based, or reactive). Whereas, a known environment 
requires global planning, also called offline (map based) [23, 
54]. Further, RRT* variants based on bidirectional trees also 
exist in literature, which generate two trees simultaneously 
from start and goal states. Further, RRT* based approaches 
considering non-holonomic constraints also exist. 

A. Single Directional Holonomic RRT* Approaches 

This section presents RRT* based approaches which 
generate path for holonomic robots and construct a single tree 

originating from initial state initz  towards goal state goalz  to 

find path in search space. Both online and offline approaches 
are discussed in this subsection. S. Karaman et al. [4] 
presented an online Anytime variant of RRT*. Basic idea of 
Anytime RRT* is to deal with the issue of large computational 
time by executing the planner for a predefined planning time. 
Once an initial path is obtained and stored, then rest of the 
time is used to improve initial solution [55, 56]. Anytime 
RRT* introduced two key features called committed 
trajectories and branch-and-bound adaptation. Strategy of 
committed trajectory originates robot’s movement to follow 
first segment of initially planned path while improving 
remaining segments of the path using iterative strategy. 

Whereas Branch-and-bound optimizes the tree for optimal 
cost. Anytime RRT* improved trajectory and computational 
efficiency in simulation and in real-time implementation using 
forklift robot. 

Despite success stories, RRT* was suffering from high 
memory consumption due to large expansion of its search 
space. Adiyatov and Varol [33] introduced memory efficient 
version of RRT*, called RRT* Fixed Nodes (RRT*FN). 
RRT*FN allows limited number of nodes in tree. When tree is 
expanded to a preset fixed number of nodes then new node 
can only be inserted by deleting the old node. 

The old nodes are deleted according to a defined node 
removal policy. RRT*FN implies a global node removal 
procedure and a local node removal procedure for this 
purpose. Local node removal procedure deletes nodes with 
single child from near neighbors during rewiring operation, if 
new node has better cumulative path cost for their child node 
as parent. In case when no such nodes are identified during 
rewiring operation then a global node removal procedure is 
used, which searches entire tree to find nodes without children 
and deletes them. When both local and global schemes could 
not found such nodes then new node is not inserted [33].  
Hence, search space of RRT*FN consumes less memory by 
forcing a fixed number of nodes in the tree. Difference of tree 
density between RRT* and RRT*FN is evident from Fig. 3 (a) 
and Fig. 3 (b). Such memory efficient versions of RRT* are 
useful in robots and embedded systems with limited memory 
[33]. 

 
               (a) RRT*                                                (b) RRT*FN 

Fig. 3. Effect of fixed nodes after 5000 iterations in tree 

Nasir et al. [35] presented an offline variant of RRT* 
called RRT*-Smart to address the issue of slow convergence. 
RRT*-Smart introduced two major features called intelligent 
sampling and path optimization. Initial path finding procedure 
in RRT*-Smart is similar to RRT*. However, once a path is 
found, it is optimized based on triangular inequality principle 
to remove redundant nodes [35]. Optimization task generates 
beacon nodes to further improve path cost. After optimization, 
it uses both intelligent and uniform sampling strategies 
alternatively according to defined Biasing Ratio for the rest of 
the iterations using 

   )*Btio=(n /ZBiasing Ra free   [35],       (2) 

where B is a programming constant and n is total number 
of nodes in tree. Intelligent sampling is biased towards beacon 
nodes. Each time it gets a new path with shorter cost, it 
optimizes the path again and identifies new beacon nodes. 
This process is based on a Biasing Radius to set radius for 
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intelligent exploration around selected beacons. The proposed 
approach accelerated the convergence rate with improved path 
cost and time efficiency. However, intelligent sampling has a 
trade-off between rate of convergence and rate of exploration. 
Therefore, frequency of intelligent sampling needs careful 
adjustment according to different environment types. An 
experimental comparison for performance evaluation is also 
provided in [52] for RRT, RRT* and RRT*-Smart. 

Another offline approach called Informed RRT* was 
presented by Gammell et al. [34] for optimal path planning in 
narrow passages. They proposed a direct subset sampling 
technique for configuration space exploration. Once an initial 
path is found, it further explores configuration space within a 
limited elliptical area defined by an ellipsoidal informed 
subset. As area of the ellipse decreases, it also improves the 
rate of convergence and path quality. 

Arslan and Tsiotras [50] proposed RRT* variant called 
RRT

# 
(RRT “sharp”) to address the issue of slow convergence. 

RRT
# 

used two processes during each iteration namely 
exploration and exploitation.  Exploration performs the 
extension process whereas exploitation uses a global re-
planning procedure to keep track of promising nodes of tree. 
Promising nodes are the ones which are good candidate to 
contribute in the final path with lowest cost. During each 
iteration, RRT

#
 updates information about promising nodes 

and prioritize them for re-planning in next iteration. Hence, it 
makes fast convergence by expanding promising nodes 
towards goal region and exploiting available node information 
to the highest degree at each iteration. 

B. Bidirectional Holonomic RRT* Approaches 

All approaches discussed above build single tree in 
configuration space. This section gives insight on bidirectional 
approaches. Bidirectional approaches generate two trees 
simultaneously from start and goal states directing towards 
each other, as shown in Fig. 4 (a) and 4 (b). Use of 
bidirectional tree was initially proposed by Kuffner and 
LaValle in RRT-Connect [11]. They used it initially for 
motion planning of 7-DOF arm of animated characters used in 
3D virtual world. Hence, it was specifically designed for path 
planning problems with no differential constraints [11]. 

 
(a) Two trees growing from start and goal   (b) Joined trees 

Fig. 4. RRT-Connect, Growing two trees towards each other [11] 

Moreover, RRT-connect is not asymptotically optimal like 
RRT*. Applying bidirectional trees to asymptotically optimal 
RRT* requires neighborhood rewiring in two trees resulting in 
high computational cost. Though, bidirectional approaches 
execute faster for holonomic robots. However, when used for 
non-holonomic problems, they made very slow convergence. 
This is due to the fact that managing non-holonomic 

constraints using connect heuristic of bidirectional tree does 
not guarantee the connection of both trees [57]. Therefore 
bidirectional variants of RRT* are considered suitable only for 
holonomic robots [57, 58]. 

An asymptotic optimal variant of RRT* [4] and RRT-
connect [11] called Bidirectional RRT* (B-RRT*) was 
proposed by Akgun and Stilman [58]. It showed empirical 
results indicating fast convergence and path refinement using 
sample rejection with an admissible heuristic. Though, this 
procedure selects only promising nodes but also affects space 
exploration. Moreover, attempt to connect both trees in each 
iteration incurred computational overhead. 

Another bidirectional RRT* was presented by Jordan and 
Perez [36] for optimal path planning also called Optimal B-
RRT*. It was provably asymptotically optimal bidirectional 
approach with improved convergence rate using a number of 
heuristic techniques [36]. However, use of multiple heuristics 
also increased computational overload. Moreover, these biased 
heuristics interfered with the algorithm characteristics (such as 
exploration, node rejection, cost function) and limited its 
application. 

Another approach called Intelligent Bidirectional RRT* 
(IB-RRT*) [37] was proposed by Qureshi and Ayaz for 
complex cluttered environment. It used an intelligent sample 
insertion heuristic technique. Simulation results of IB-RRT* 
showed fast convergence towards optimal path using less 
memory resources in comparison with RRT* and Bi-RRT. 

Recently, Yi et al. [45] presented Homotopy-Aware RRT* 
(HARRT*) based on bidirectional RRT* [58]. HARRT* is 
inspired with the idea of homotopy, i.e., to plan path from one 
topological space to another by human intervention. This 
approach addresses the planning problems of human-robot 
team interactions in search and rescue, police, and military 
operations. Effectiveness of proposed approach is theoretically 
proved using case studies. However, further investigation of 
the proposed approach remains to explore using simulations 
and real world experiments. 

C. Non-holonomic and Kinodynamic RRT* Approaches 

Non-holonomic robots are car-like robots which have to 
perform complex motions to achieve a particular direction. 
This phenomenon also restricts geometry of the path [1]. A 
car-like robot needs to change its position coordinates in order 
to rotate around its axis (see Fig. 5). It is under-actuated due to 
the non-holonomic constraints imposed by the wheels. 
Therefore, non-holonomic path planning requires satisfying 
both internal constraints (physical limitations of robot) and 
external constraints (obstacles in environment) [1, 38, 59]. 
Further, if kinodynamic constraint arises, then it also affects 
path planning mechanism. 

Kinodynamic planning [60] refers to motion planning 
problems for which velocity and acceleration bounds must be 
satisfied. Precisely, kinodynamic is an umbrella term used to 
deal with kinematics (position, bounds on velocity and 
acceleration) and dynamic constraints (force) simultaneously 
[1, 60]. Non-holonomic planning deals with either both (i.e., 
kinodynamic) constraints or kinematic constraints only [1, 
60]. 
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Fig. 5. Non-holonomic constraints of car-like robot [61] 

As RRT* connects pair of states using straight lines, which 
is not feasible for kinodynamic systems due to the differential 
constraints. Prior kinodynamic extensions of RRT* such as 
Kinodynamic-RRT* [62] and LQR-RRT* [63] only satisfy 
bounded sub optimality and require RRT* to re-propagate the 
tree partially during each iteration. Thus, making these 
approaches computationally expensive. 

In recent years, many RRT* based planners were focused 
to solve the optimal path planning problem for car-like robots 
dealing with non-holonomic or kinodynamic constraints. 
Webb and Berg [49, 64] presented a kinodynamic extension of 
RRT* called Adapted RRT* to overcome the above 
limitations. The proposed approach found asymptotically 
optimal trajectories for a car-like robot with a 5D state space 
and an aerial vehicle with a 10D state space. 

Recently, Lee et al. [44] proposed Spline-based RRT* 
(SRRT*) for non-holonomic path planning of fixed-wing 
Unmanned Aerial Vehicles (UAVs) in three-dimensional 
environment. The proposed algorithm expands the tree by 
using a cubic Bézier spline curve. Use of Bézier spline 
parameterization in SRRT* as local planner replaced time and 
input discretization. Moreover, it performed dynamic 
feasibility and geometric collision checks as part of the tree 
extension. This phenomenon enabled SRRT* to produce 
smooth and cost-optimal path in 3D simulations using 
constraint model of UAV. 

Alejo et al. [3] presented RRT*i for efficient motion 
planning of UAVs. They compared the proposed approach 
with genetic algorithm, RRT and RRT*. Simulations results 
and real world experiments using UAV proved that RRT*i 
computes more predictable and smoother trajectories as 
compared to aforementioned techniques. Initially, RRT*i also 
works similar to RRT*. However, as soon as an initial 
trajectory is found, it adapts local sampling with Gaussian 
distribution and node rejection technique. Using this sampling 
technique it refines tree in vicinity of initial path solution, 
which leads to rapid convergence with less jagged path 
segments. 

Recently, Csorvasi et al. [43] have proposed RTR+C*CS 
which uses a global planner and a local planner for car-like 
robots. First, global planner called RTR (Rotate-Translate-
Rotate) generates path. Then local planner called C*CS makes 
it feasible for car-like robots using circular arcs and straight 
segments. However, its local planner requires large number of 
iterations to find less sharp turns. 

Moon et al. [39] presented a kinodynamic variant of RRT* 
called Dual-Tree RRT (DT-RRT). DT-RRT manages two 
trees called state tree and workspace tree. At first, workspace 
tree explores targeted environment without considering any 
physical constraints. Then, state tree generates trajectories 
from workspace tree nodes using kinematic and dynamic 
constraints. It also offers reconnect-tree scheme in contrast to 
rewire operation of RRT* [7]. The reconnect-tree scheme [39] 
maintains child nodes with reduced computational cost, in 
order to guarantee asymptotic optimality. The dual tree 
scheme of DT-RRT [39] approach showed high success rate 
for node extension because it reduced the node rejection 
chances by applying kinodynamic conditions. Moreover, this 
approach is compatible with advanced near-neighbor search 
schemes, for example k-d trees with reduced space 
dimensionality. The proposed approach showed better 
computation time in simulation results using two wheeled 
mobile robot for high speed navigation. However, this scheme 
is only useful for known or partially known environment. 

Another variant of RRT* proposed by Lan and Cairano [2] 
was experimented under Mitsubishi Electric Research 
Laboratories for autonomous driving vehicle. The proposed 
approach used two-stage sampling strategy similar to SRRT 
[40] and a weighted cost function tailored to drive semi-
autonomous vehicle. The proposed approach could also 
manage driving lanes beside collision avoidance. A local re-
planning procedure enables algorithm to react with dynamic 
obstacles. Further, path pruning and G

2
 continuous curvature 

smoothing techniques are applied as post processing. 

J. Suh et al. [65] presented an offline Cost Aware RRT* 
(CARRT*) for energy efficient optimal path planning in high 
dimensional space for humanoid robot. The approach used 
two trees to address the dense sampling issue in RRT*. First 
tree is a standard RRT* tree to determine nearest node for 
newly sampled random point whereas second tree contains 
first tree to extend additional long branches.  They also 
proposed a cross entropy function based on CE path planning 
[66] and a cost function based on mechanical work (MW) [67] 
to measure energy consumption along a path for humanoid 
robot.  Limitation of large memory requirements is also 
addressed by another variant called Potential Function RRT* 
(PRRT*) presented by Qureshi, and Ayaz [48]. PRRT* 
(PRRT*) is the extension of two other variants PGD-RRT* 
and APGD-RRT* [68]. As compared to these two approaches, 
PRRT* efficiently integrates artificial potential field with 
RRT* for guided exploration of search space with less 
memory needs and improved convergence. 

Devaurs et al. [46] proposed Transition based RRT* (T-
RRT*) which focuses on optimal path planning for continuous 
configuration-cost space. Their approach integrated transition 
test based functions used in T-RRT [67] to address the issue of 
path quality with respect to a given criterion. 

Recently, Choudhury et al. [47] have proposed RABIT* to 
address the problem of planning in high dimensions. The 
proposed approach focuses homotopy classes which are 
difficult to sample for example narrow passages.  RABIT* 
was extended by an informed global technique called BIT* 
[69] by using a local optimization module to improve an initial 
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sub-optimal path towards a local optimum. Thus, the proposed 
approach preserved almost-sure global optimal convergence. 

IV. STATE OF THE ART (2011-2016) 

The most relevant papers reviewed in this article, along 
with the research contributions and limitations are 
summarized below in Table 1. Different attributes of the state 
of the art approaches are also listed in Table 2. 

TABLE I. STATE OF THE ART (2011-2016) 

  Sr# 
Author, 

year 
  Approach   Research Contributions  Limitations / Future Recommendations 

1.  

Karaman 
and 

Frazzoli 

[7], 2011 

RRT* 

 Proved asymptotically optimal property for 

RRT*. 

 Introduced new key features of near neighbor 

search and rewiring operations. 

 Visibly refined path quality than original RRT. 

 New features had an efficiency trade-off. Insertion of good 

candidate node with best parent selection improved tree 

cost but on the other hand it also slowed down convergence 
rate of RRT*. 

 Jagged, suboptimal paths and slow convergence 

 Large memory requirements. 

 

2.  

Karaman et 

al.  [4], 

2011 

Anytime 
RRT* 

 It introduced two key features called committed 
trajectories and branch-and-bound adaptation. 

 It improved trajectory and computational 
efficiency by gradually removing nodes from 

tree which are unable to improve current 
solution path. 

  Jagged and suboptimal paths. 

  Could overestimate and may cause unnecessary node 
removal during initial expansion of tree when it is not 

mature. 

3.  

Akgun and 
Stilman 

[58], 2011  

B-RRT* 
 Improved convergence speed and path 

refinement using sample rejection with an 
admissible heuristic. 

 Attempt to connect both trees in each iteration incurred 

computational overhead. 

 Jagged and suboptimal paths. 

 Large memory requirements. 

4.  

Adiyatov 

and Varol 
[33], 2013  

RRT*FN 
 Memory efficient version of RRT* by forcing a 

fixed number of nodes in the tree.  

 Jagged, suboptimal path. 

 Rate of convergence to optimal path is lower than base 
RRT*. 

 Worked only for static known environment. 

5.  
Nasir et al. 
[35], 2013 

RRT*-Smart 

 Two new features intelligent sampling and path 
optimization were introduced. 

 It accelerated the convergence rate with 
improved efficiency with respect to both time 

and cost 

 It is dependent upon a heuristic called Biasing Ratio which 
has a trade-off between convergence rate and exploration 

of space. 

 Heuristic used by this approach are not automated and 

require programmer dependent value for different 
environments. 

6.  

Jordan and 

Perez  [36], 

2013  

Optimal 

B-RRT* 

 Introduced multiple heuristics, based on 

different conditions to increase convergence rate 

of bidirectional RRT*. 

 Use of multiple heuristics caused computational overload. 

 Biased heuristics interfere with the algorithm 

characteristics (such as exploration, node rejection, cost 

function) and limited its application also. 

7.  

O. Arslan 

and P. 
Tsiotras 

[50], 2013 

RRT# (RRT 
“sharp”) 

 Introduced a global replanning scheme to 
maintain promising nodes of tree to make fast 

convergence towards optimal path with low 
cost. 

 Real time experiments and applications would be beneficial 

to investigate and improve the efficiency of approach. 

8.  

Webb and 
Berg [49, 

64],  

2012, 2013  

Adapted 

RRT* 

 Presented kinodynamic extension of RRT* with 
ensured asymptotic optimality with controllable 

linear dynamics, in multi dimension state space. 

 Post processing steps for path smoothness and real world 

quadrotors experiments are planned for future work. 
However, such experiment would require controller 

stabilization for final trajectory. 

9.  
Lee et al. 
[44], 2014 

SRRT* 

 Proposed spline based RRT* based on a cubic 
Bézier curve for fixed-wing UAVs. 

 Presented geometric collision and dynamic 
feasibility function checking constraints during 

tree expansion.   

 Produced feasible smooth and cost-optimal path 
in 3D simulations. 

 Online planner with real time application would be 
beneficial to further investigate and improve the efficiency 

of approach. 

10.  

Gammell et 

al. [34], 

2014 

Informed 
RRT* 

 Proposed direct sampling technique based on 

ellipsoidal informed subset, which showed 

improved convergence than RRT*. 

 Heuristic used to shrink planning problem is highly 

dependent upon initial solution cost which makes it 

effective only under certain conditions. 

11.  

Qureshi 
and Ayaz 

[37], 2015 

IB-RRT* 

 Introduced intelligent sample insertion heuristic 
with minimal memory requirements, which 

improved the path quality as compared to RRT* 

and B-RRT*. 

 Its application needs further investigation for online 
planning. 

12.  

Moon and 

Chung 

[39], 2015  

DT-RRT 

 Addressed kinodynamic planning for high speed 

mobile robot and produced practically feasible 

trajectories. 

 Instead of using rewire operation, it introduced 

reconnect-tree scheme to maintain child nodes 
with reduced computational cost. 

 Approach need advancement for dynamic and unknown 
scenarios as its reconnect-tree scheme is only beneficial in 

known environments. 
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 Reduced the node rejection chances by using 
kinodynamic conditions. 

13.  

Alejo et al. 

[3], 2015  
RRT*i 

 Predictable and practical trajectory generation 

for UAVs. 

 Smoother trajectories as compared to RRT and 

RRT* with improved path quality. 

 Introduced new local sampling technique.  

 Could produce unexpected collisions in multi-UAV 
applications with increased uncertainty.  

 

14.  

Csorvasi et 
al. [43], 

2015 

RTR+CS* 

 

 Used a local planner to generate feasible path 

for car-like robots using circular arcs and 

straight segments. 

 Generated paths are not curvature continuous and natural.  

 It is still under experimental process to improve 

computational performance. 

15.  

Lan and Di 
Cairano 

[2], 2015  

Mitsubishi 

RRT* 

 Addressed the problem of G2 continuous 
curvature smooth path for autonomous driving 

vehicle with the capability of lane management 
on roads. 

  Introduced a local replanning procedure to 

safely avoid and re-plan due to dynamic 
obstacles.  

 In context of autonomous vehicle driving, uncertainty of 
dynamic environment is not managed. 

16.  

J. Suh et al. 

[65] , 2015 
CARRT* 

 Addressed the problem of large number of 

samples by using two trees and cross entropy in 
RRT*. 

 Produced energy efficient path in high 

dimensional space. 

 It is limited to address the planning problems for humanoid 

robots only.    

17.  

Qureshi 

and  Ayaz 
[48], 2016 

PRRT* 

 Addressed the problem of high memory 

consumption and slow convergence by 
incorporating artificial potential field 

characteristic in RRT*. 

 Considering optimal results with fast convergence than 

RRT*, approach could be employed for online planning in 

future. 

18.  

Yi et al. 

[45], 2016 

HARRT* 

 
 Presented a human-robot interactive planner 

using RRT* and homotopy algorithm. 

 Trade-off between computational efficiency and path 
quality. 

 Natural language processing or graphical user interface 
could be adapted for compatibility, usability and workload 

of human and robot interactions. 

19.  

Devaurs et 
al. [46], 

2016 

T-RRT* 
 Integrated transition tests with RRT* for 

efficient extension of tree in a cost space. 
 Performance analysis with RRT* in different problems 

would be of interest to show its beneficial problem class.  

20.  

Choudhury 

et al. [47], 

2016 

RABIT* 
 Used an informed global technique BIT* with 

RRT* to find optimal path for narrow passages 

in high dimensions. 

 Local optimizer suggested by approach needs further 

investigation for optimization of path. 

TABLE II. ATTRIBUTE SUMMARY OF THE STATE OF THE ART (2011-2016) 

Approaches Constraints Planning Mode Kinematic Model Sampling Strategy Metric 

1.  RRT* [7] Holonomic Offline Point    Uniform    Euclidean 

2.  Anytime RRT* [4] Non-holonomic Online Dubin Car    Uniform    Euclidean + Velocity 

3.  B-RRT* [58] Holonomic Offline Rigid Body    Local bias    Goal biased 

4.  RRT*FN [33] Holonomic Offline Robotic Arm    Uniform    Cumulative Euclidean 

5.  RRT*-Smart [35] Holonomic Offline Point    Intelligent    Euclidean 

6.  Optimal B-RRT* [36] Holonomic Offline Point    Uniform    Euclidean 

7.  RRT# [50] Holonomic Offline Point    Uniform    Euclidean 

8.  Adapted RRT* [64], 

[49] 
Non-holonomic Offline Car-like and UAV    Uniform    A* Heuristic 

9.  SRRT* [44] Non-holonomic Offline UAV    Uniform     Geometric + dynamic constraint 

10.  Informed RRT* [34] Holonomic Offline Point    Direct Sampling    Euclidean 

11.  IB-RRT* [37] Holonomic Offline Point    Intelligent    Greedy + Euclidean 

12.  DT-RRT [39] Non-holonomic Offline Car-like    Hybrid    Angular + Euclidean 

13.  RRT*i [3] Non-holonomic Online UAV    Local Sampling    A* Heuristic 

14.  RTR+CS* [43] Non-holonomic Offline Car-like    Uniform + Local Planning     Angular + Euclidean 

15.  Mitsubishi RRT* [2] Non-holonomic Online Autonomous Car    Two-stage sampling    Weighted Euclidean 

16.  CARRT* [65] Non-holonomic Online Humanoid    Uniform    MW Energy Cost 

17.  PRRT* [48] Non-holonomic Offline P3-DX    Uniform    Euclidean 
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18.  HARRT* [45] Holonomic Offline Point    Uniform    Homotopy check 

19.  T-RRT* [46] Non-holonomic Offline Quadrotor    Uniform    Transition test 

20.  RABIT* [47] Non-holonomic Offline 
Autonomous 
helicopter 

   Uniform    A* Heuristic 

V. LIMITATIONS AND PROSPECT CHALLENGES 

The existing state of the art requires improvement 
particularly in terms of accuracy, efficiency, robustness, and 
path optimization. Optimal path planning is a challenging 
problem and for online planning applications   convergence to 
optimal path is even more important. This section describes 
the limitations addressed by variants of RRT* in recent years 
and also highlights the incessant future challenges. 

A. Slow Convergence and Large Memory Requirements 

RRT* requires large number of iterations and samples to 
avoid local minima consequently increasing memory 
requirements [48, 65]. Pure exploration also expands search 
space exponentially to find global optimum [47].  RRT* was 
proposed initially using uniform sampling strategy which was 
unable to effectively capture the connectivity of environment 
[7]. Further it also expands tree in the areas of configuration 
space that are far away from the final solution. Hence, a large 
number of nodes in tree are not good enough to contribute in 
the optimal path. These large number of nodes increase tree 
density by adding non-promising branches in tree. This 
phenomenon increases computational time and reduces 
convergence rate. Hence, slow convergence is also linked with 
search space exploration criteria and sampling strategy used 
by planner. 

It is evident from discussion in Section III that dense 
sampling, large memory requirements and slow convergence 
are proven issues in RRT*. Recent RRT* based planners have 
addressed these issues by exploiting search space using 
different sampling strategies such as direct sampling [34], 
goal biased sampling [11, 56, 58], intelligent sampling [28, 
35, 70], two-stage sampling [40], and disc based sampling 
[39, 42]. Few of them are shown in Fig. 6. The sampling 
strategies shown in Fig. 6 use different space explorations 
criteria. They try to limit search space using different 
heuristics to grow only promising branches and nodes in the 
tree. Another strategy reported in [48] performs guided 
exploration using artificial potential field to solve these issues.  
Moreover, different node deletion [33] or node rejection 
techniques [37] are also used to limit the tree cost by 
maintaining promising nodes according to a defined criterion. 

However, these solutions especially guided exploration 
based solutions also require a careful balance of exploration 
and exploitation in search space. Moreover, sampling 
strategies based solutions use manual heuristics, which need 
specific tuning according to application or environment type 
for better performance. Therefore, all the strategies discussed 
above need further improvement regarding robustness and 
automation of heuristics parameters, specifically in the context 
of online planning. 

 
         (a) Uniform                                 (b) Intelligent 

 
         (c) Disc biased                                  (d) Direct 

Fig. 6. Different sampling strategies to overcome slow convergence [35, 42] 

B. Dealing with Narrow Passages 

Conventional uniform sampling of RRT* reduces the 
probability of nodes selection from narrow passages. Very few 
approaches are reported to specifically address the problem of 
optimal path in narrow passages. These approaches either use 
heuristics dependent upon initial solution such as Informed 
RRT* [34] or they are under theoretical assumptions such as 
HARRT* [45]. There is a need to investigate the potential of 
these approaches to achieve optimization and reliability in 
narrow passages using real world experiments. Moreover, in 
context of kinodynamic constraints, problem of narrow 
passages is still an open research issue. 

C. Efficiency of Nearest Neighbor Search 

Computational complexity of near neighbor search in each 
iteration also grows as tree expands exponentially. Therefore, 
it is considered a bottleneck for efficiency and convergence. 
Adiyatov and Varol [33] maintained the efficiency by fixing 
maximum possible nodes in tree. Other strategies that most of 
the researchers have adopted are to use smarter search 
techniques such as Box approach [71] or smarter data 
structure such as k-d tree and quad trees [71]. Yershova and 
LaValle [72] proposed k-d trees based near neighbor search 
algorithm for Euclidean spaces. However, alternative 
techniques to promote least cost connections in tree or faster 
search algorithms could be helpful to further improve the 
efficiency. 

D. Post Processing Requirements 

As RRT* based approaches generate sub-optimal path 
therefore, post processing techniques are adopted to further 
optimize the path. Two post processing techniques usually 
adopted for path refinement are pruning and smoothing. Path 
pruning reduces the path length by removing redundant nodes 
[56]. Two types of pruning, local pruning and global pruning 
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are shown in Fig. 7 (a) and Fig. 7 (b) respectively. Local 
pruning is based on Line of Sight (LOS) principle whereas, 
global pruning removes the myopic behavior of local pruning 
by pruning the nodes of entire path [56]. 

 
               (a) Local pruning                     (b) Global pruning 

Fig. 7. Post processing schemes [40] 

Even after pruning, generated linear piece-wise path is not 
feasible for UAVs and car-like robots. Curvature 
discontinuities in path make controller unstable and overshoot 
energy [41]. This phenomenon can cause mechanical aging, 
localization errors and high energy requirements. The situation 
becomes more complicated when planning application 
involves heavy machinery such as industrial, defense or 
agricultural robots. 

To resolve the issues stated above, different levels of 
smoothing such as path smoothing, continuous smoothing, and 
continuous curvature smoothing [41] have been applied as 
post processing steps. Approaches used for this purpose are 
classified as graphical methods (lines, arcs, circles, and 
clothoids) and functional methods (Bézier, B-spline and 
polynomial interpolation). Recent RRT* variants have used 
Bézier and B-spline to meet the challenges of kinodynamic 
planning for non-holonomic vehicles effectively in [40], see 
Fig. 7(c). 

However, these approaches also have the limitation of 
maintaining continuity using suitable degree of curve. 
Clamped B-spline is more robust for path smoothing than 
Bézier and B-spline due to its ability of maintaining continuity 
and order for dynamic re-planning [41]. Recently Elbanhawi 
et al. [41] have proposed a C

2
 continuous path smoothing 

approach using clamped B-spline for continuous steering of 
car-like robots. Their approach mimics human steering with 
high accuracy using a threshold angle and segment insertion 
technique. Their smoothing approach could be applied with 
recent RRT* variants for improved performance. 

However, dealing with non-holonomic and kinodynamic 
constraints after trajectory generation as post processing step 
increases the complexity of the planning and search space. 
Moreover, it is also computationally expensive due to frequent 
updates considering real world applications and online 
planners. 

E. Dealing with Kinodynamic Complexities 

Non-holonomic constraints require addition of robot’s 
orientation to state vector. Thus, increased dimension 
increases complexity of configuration space exploration. 
Moreover, they involve solving differential equations and has 
more complicated state transition equation. Thus, planning for 

non-holonomic robots with kinodynamic constraints is more 
difficult and challenging than holonomic robots [1, 73]. 
Therefore, RRT* application with non-holonomic motion 
requires more iterations to converge than a holonomic version 
[57]. Usually path planners generate linear piece-wise path 
ignoring all kinodynamic constraints and path smoothing is 
applied later as post processing step as discussed above in 
section 4.4.  Recent state of the art [41] is inclined to apply 
kinematic constraint model while searching the path to avoid 
complexities of post processing [8, 60]. 

RRT* based approaches have a steering function that 
connects configurations using a straight line from  nearestz  to 

randz  to generate newz . However, such a steering function is 

not feasible for non-holonomic robots. To resolve these issue 
kinematic model of non-holonomic robot is used, which 
involves numerical integration [40]. However, there is always 
a trade-off between computational efficiency and accuracy 
when using numerical integration. Recently, Lee et al. used 
spline in SRRT* [44] to resolve these issues by encoding non-
holonomic constraints in spline generation during path 
searching process of planner. This process also reduced the 
kinodynamic planning to lower dimensional space. 

RRT* defines a metric in configuration space to identify 
the nearest neighbors of a given configuration. Since robots 
have to meet the challenges of un-certain dynamic 
environment, actuator constraints, localization errors and 
computation limitations. There is no silver bullet managing all 
these factors and it is difficult to distinctively define such 
metric. In context of non-holonomic planning, simple 
Euclidean distance metric is not proficient to capture cost of 
node in configuration space. Tree nodes need to qualify 
feasibility test for non-holonomic constraints, which is quite a 
challenging task. Lee et al. [44] have used a spline based 
metric in SRRT* which performs dynamic feasibility and 
geometric collision checks.  However, the proposed approach 
takes several minutes in simulation and in real-time it is even 
more delayed [73]. 

Poor selection of metric for non-holonomic planning could 
also limit robot motion in narrow passage and slow down the 
planner [62]. Therefore, metric should be a true representative 
of the effort, or time-to-go between two configurations, 
otherwise highly sub-optimal paths are produced [8]. Future 
work in metric design solving kinodynamic problem with real 
time computational efficiency is an important element to 
improve performance of RRT*. Moreover, path smoothness 
could be further improved using other Computer Aided and 
Graphic Design (CAGD) tools such as NURBS or spiral 
segments. Defining a suitable weight exploitation criteria for 
NURBS can control local change in path segments while 
performing path smoothness.  Cubic Bézier spiral segments 
reduce the number of curvature extrema in path [74]. 
Therefore, exploiting curvature continuous spiral transition 
curves could be useful to produce smooth path for high speed 
moving objects [75] such as UAVs. 

VI. CONCLUSION AND FUTURE DIRECTIONS 

Research over the past decade has revealed that traditional 
path planning methods are not feasible for non-holonomic, 
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cluttered and high dimensional problems. RRT* have proved 
its worth for dealing with such complex problems. This paper 
presents review of major contributions in optimal path 
planning using RRT* planning algorithm and its extended 
variants in recent six years. RRT* based approaches have 
revolutionized the state of the art in path planning. These 
recent variants have mostly addressed the issues of sub-
optimal paths, slow convergence and high memory 
requirements. However, generalization and reliability in 
context of online planners and non-holonomic constraints are 
still open research issues. Though RRT* based approaches 
addressing kinodynamic and non-holonomic constraints are 
also in progress, however kinodynamic planning still 
confronts issues of high dimension, narrow passages and 
trade-off between accuracy and computational efficiency. 

In recent planners, use of spline with RRT* has opened 
new horizon of research for path planning of non-holonomic 
robots. Curvature continuous path for high speed vehicles 
while considering non-holonomic constraints, uncertainty of 
dynamic environment, and preserving computational 
efficiency is another thriving area of future research.  Use of 
other CAGD tools such as clamped B-spline, NURBS and 
spiral segments with RRT* variants for path planning of non-
holonomic robots would be an interesting research endeavor in 
future. 
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